Toggle navigation
HU Home
عربي
Home
About me
Publications
Students
Announcements
Contact
BASHIR MOHAMMAD ABDALLH AL-HDAIBAT
Faculty of Science
BASHIR MOHAMMAD ABDALLH AL-HDAIBAT
Faculty of Science
عربي
Welcome
Students
Publications
Research Interests
Published Research
Published Books
Academic Conferences
Thesis Supervision
Awards/Prizes/Orders
Ongoing Research
Contact us
Welcome to the Hashemite University faculty staff website.
Bashir Al-Hdaibat
Associate Professor
Mathematics
Mathematics
Faculty of Science
Department of Mathematics
b.alhdaibat@hu.edu.jo
http://staff.hu.edu.jo/alhdaibat
ORCID ID :
318467410
Office No. :
IT 148
EXT :
4613 , 4549 , 4207
C.V. Document file as PDF:
Ph.D.
Ghent University
Belgium,2015
Master
Al al-Bayt University
Jordan,2011
Bachelor
The Hashemite University
Jordan,2006
Dynamical Systems, bifurcation theory, chaos theory, perturbation methods and nonlinear dynamics in biology and economics.
[1] Mohammad A. Safi, Bashir Al-Hdaibat, Mahmoud H. DarAssi, Muhammad Altaf Khan, (2021). Global dynamics for a discrete quarantine/isolation model. Results in Physics. 21, 103788. [2] Hussam Alrabaiah, Mohammad A. Safi, Mahmoud H. DarAssi, Bashir Al-Hdaibat, Saif Ullah, Muhammad Altaf Khan, Syed Azhar Ali Shah, (2020). Optimal control analysis of hepatitis B virus with treatment and vaccination. Results in Physics. 19, 103599. [3] B. Al-Hdaibat, (2020). Homoclinic solutions in Bazykin’s predator-prey model. Discontinuity, Nonlinearity, and Complexity. 9(3), 339-350. [4] M.F.M. Naser, B. Al-Hdaibat, G. Gumah & O. Bdair, (2020). On the consistency of local fractional semilinear Duhem model. International Journal of Dynamics and Control. DOI: https://doi.org/10.1007/s40435-019-00607-9. [5] B. Al-Hdaibat, S. Al-Ashhab & R. Sabra, (2019). Explicit solutions and bifurcations for a system of rational difference equations. Mathematics. 7(1), 96. [6] B. Al-Hdaibat, (2019). Bifurcations in a chaotic duopoly game with a logarithmic demand function. Dynamics of Continuous, Discrete and Impulsive Systems Series B: Applications and Algorithms. 26(6), 447-456. [7] B. Al-Hdaibat, M.F.M. Naser & M.A. Safi, (2019). Degenerate Bogdanov-Takens bifurcations in the Gray-Scott model. Nonlinear Dynamics and Systems Theory. 19(2), 253-262. [8] B. Al-Hdaibat, W. Govaerts, D.L. van Kekem & Yu.A. Kuznetsov, (2018). Remarks on homoclinic structure in Bogdanov-Takens map. Journal of Difference Equations and Applications. 24(4), 575-587. [9] M.H. Dar Assi, M.A. Safi & B. Al-Hdaibat, (2018). A delayed SEIR epidemic model with pulse vaccination and treatment. Nonlinear Studies. 25(3), 521-534. [10] S. Al-Shawaqfeh, M.F.M. Naser, B. Al-Hdaibat & A. Issa, (2017). On the generalized Duhem model associated with legendre polynomials. Far East Journal of Mathematical Sciences. 102(12), 2321-2334. [11] N. Neirynck, B. Al-Hdaibat, W. Govaerts, Yu.A. Kuznetsov & H.G.E. Meijer (2016). Using MatContM in the study of a nonlinear map in economics, Journal of Physics: Conference Series. 692(1), 012013. [12] B. Al-Hdaibat, W. Govaerts, Yu.A. Kuznetsov & H.G.E. Meijer, (2016). Initialization of homoclinic solutions near Bogdanov-Takens points: Lindstedt-Poincaré compared with regular perturbation method. SIAM Journal on Applied Dynamical Systems. 15-2, 952-980. [13] Yu.A. Kuznetsov, H.G.E. Meijer, B. Al-Hdaibat & W. Govaerts (2015). Accurate approximation of homoclinic solutions in Gray-Scott kinetic model. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 25(9), 1550125. [14] B. Al-Hdaibat, W. Govaerts & N. Neirynck (2015). On periodic and chaotic behavior in a two-dimensional monopoly model, Chaos, Solitons & Fractals. 70, 27-37. [15] Yu.A. Kuznetsov, H.G.E. Meijer, B. Al-Hdaibat & W. Govaerts (2014). Improved homoclinic predictor for Bogdanov-Takens bifurcation. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 24(4), 1450057. [16] Al-Hdaibat & W. Govaerts (2014). MatCont tutorial on starting up homoclinic orbits from a Bogdanov-Takens point, MatCont version 5.3. Available on http://sourceforge.net/projects/matcont/
A study of local bifurcation in two dimensional space of the Gray-Scott kinetic model, (2019). Al_al-Bayt University, Master thesis by Nisreen Al-Masaeed and under supervision Dr. Saleem Al-Ashhab
Current Courses: 110101402 Numerical Analysis-(1) 110108201 Calculus-(3) Previous Courses: 110101408 Numerical Methods 110101495 Special Topics 110101241 Linear Algebra-(1) 110101407 Numerical Analysis-(2) 110101402 Numerical Analysis-(1) 110101304 Partial Differential Equations 110101302 Ordinary Differential Equations-(2) 110101203 Ordinary Differential Equations-(1) 110108201 Calculus-(3) 110108102 Calculus-(2) 110101101 Calculus-(1) 110101152 Discrete Mathematics
Copyright © 2018 The Hashemite University ICET.